

 1

Graphite

Smart-font technology
to bridge the digital divide

by Sharon Correll,
SIL International

 2

The history of Graphite

 SIL's work among minority language groups
 Linguistic diversity
 Economics
 Standardization issues
 Experimental orthographies

 Mac not a viable platform for SIL
 Work started seriously in 1998

 Grew up alongside of OpenType, ICU, etc.
 Linux work started around 2002

The motivation for Graphite lies in SIL's work among linguistic minority
groups. Because of the linguistic diversity that exists in many countries and
regions, there is often a need for a minority group to make adaptions in order
to use the national script for their language. The minority language may differ
profoundly from the national language, requiring unique characters, character
combinations, diacritics, tone markings, etc. For reasons of economics or
simple lack of knowledge, these needs are often not supported well by software
developed by the major industry players. Another obstacle is the fact that the
characters used by minority languages are not part of international standards
such as Unicode.

In the early 1990s, SIL workers with complex script needs often used the GX
technology on the Macintosh. However, there were many places around the
world where the Mac did not prove to be a viable platform. Graphite was
originally developed to provide extensible complex script support on the
Windows platfom.

Work on Graphite started seriously around 1998, and so it “grew up”
alongside of other technologies such as OpenType, ICU, etc. Work on Linux
began in 2002, as it began to be clear that Linux's open-source model was a
good fit with SIL's work and philosophy.

 3

Approaches to complex script rendering

 OpenType-based: Harfbuzz, Uniscribe, Pango
 Script knowledge hard-coded in system modules
 Font-specific knowledge in font tables

 “Pure” smart-font approach: Graphite, AAT
 All rendering knowledge represented within font tables

 Hybrid: M17N
 Flexible line

There are two main approaches to complex-script rendering. Technologies
that are based on OpenType, such as Harfbuzz, Uniscribe, and Pango, separate
script knoweldge from font knowledge, with the former incorporated into
standard software modules and the latter into font tables. (In fact, OpenType
itself does not have the power to handle all script-related behaviors, such as
reordering.) Graphite and AAT, on the other hand, are both “pure” smart-font
technologies, in that all the knowledge governing rendering, both script-
related and font-specific, is represented by font tables. M17N represents a third
or hybrid approach, creating a flexible line between what is put in software
modules and what goes in the font.

 4

Approaches to complex script rendering
 (1) OpenType-based

 Advantages
 One official, correct (?!), and up-to-date copy of script knowledge
 Script knowledge does not have to be duplicated

 (2) “Pure” smart font approach
 Advantages

 Only one technology to deal with
 Script and font behaviors can interact in more powerful ways
 More appropriate for supporting non-standarized scripts

 (3) Hybrid approach: M17N
 Advantage: flexibility

Each of the approaches to script support has advantages and disadvantages.
The main advantage of the OpenType model is that general script knowledge is
implemented once and is made available by means of a single system module.
This results in relatively consistent behavior regardless of the font.

One of the advantages of the “pure” smart font approach is that
implementing support for a script involves dealing with a single technology.
Also, because the script- and font-knowledge are handled by the same process,
the two kinds of information can interact in more complex ways, resulting in a
more powerful system. Often minority languages need support for a non-
standardized set of characters or some experimental behaviors, and while it
would generally not be desirable or practical to implement such support in
standard system module, it is quite feasible to do so by means of special-
purpose font.

 5

Graphite system overview

A Graphite font is created by writing a GDL program to coordinate with a
font. GDL (Graphite Description Language) is a programming language that
uses transformation rules to specify the font's behavior. (Utilities are available
to help auto-generate some of the GDL code based on information from the
font.) The program and the font are compiled together to create a font with
extra Graphite tables. The font is used by the Graphite engine, which serves as
the back-end of a text-processing application. The engine provides support for
drawing on an output device.

Currently Graphite only handles TrueType fonts, but it may be possible to
extend it to handle other formats.

 6

GDL example: substitution

 Rule
 clsDotted > clsDotless / _ clsUpperDiac;

 Classes
 clsDotted = (gLcI, gLcJ, ...);
 clsDotless = (gDotlessI, gDotlessJ, ...);
 clsUpperDiac = (gAcute, gGrave, gCircum, ...);

 Glyphs
 gLcI = U+0069;
 gLcJ = U+006A;
 etc.

GDL (Graphite Description Language) is a programming language that uses
transformation rules to describe font behavior. The rules have some
similarities to phonological rules seen in linguistic study.

The slide above shows an example of a GDL substitution rule. The purpose
of the rule is to replace a dotted letter with its dotless version in the context
where it is followed by an upper diacritic. (The part of the rule that follows the
slash indicates the context, and the underscore in the context represents the
location of the dotted base character to the diacritic.)

The items used in the rules must also be defined in GDL. The clsDotted
class contains dotted glyphs such as lower case i and j. The clsDotless class
contains the dotless equivalents. The individual glyphs above are defined in
terms of Unicode characters, but they can also be defined using glyph ID
numbers or Postscript names from the font.

 7

GDL example: substitution

 Rule
 clsDotted > clsDotless / _ clsUpperDiac;

 Classes
 clsDotted = (gLcI, gLcJ, ...);
 clsDotless = (gDotlessI, gDotlessJ, ...);
 clsUpperDiac = (gAcute, gGrave, gCircum, ...);

 Glyphs
 gLcI = U+0069;
 gLcJ = U+006A;
 etc.

Note that the items in the clsDotted and clsDotless classes must be
listed corresponding order, due to the way substitution rules works. That is,
the substitution process determines the index of the input glyph in the input
class, clsDotted, selects the corresponding item from clsDotless, and
places it in the output.

 8

GDL example: splitting

 Rule
 _ clsCons clsSplitVowel >
 clsSplitVowelLeft$3 @2 clsSplitVowelRight;

 Classes
 clsCons = (gKa, gNga, gCa, gJa, ...);
 clsSplitVowel = (gO, gOO, gAU);
 clsSplitVowelLeft = (gOleft, gOOleft, gAUleft);
 clsSplitVowelRight = (gOright, gOOright, gAUright);

 Glyphs
 gO = U+0BCA;
 gOleft = postscript(“vowelsignE”);
 gOright = glyphid(342);
 etc.

A more complex example involves splitting, as is often seen in scripts from
South Asia. The rule above replaces a vowel that must be split with its left- and
right-hand halves. More accurately, it inserts the left half into the output and
replaces the original glyph with the right half. The underscore in the input
represents the location where the insertion will occur, that is, before the
consonant. The “@2” syntax indicates that the consonant should be copied into
the output without any change.

Again, the classes and glyphs used in the rule must be defined. In this case,
there are three corresponding classes, the original vowel, the left-hand half,
and the right-hand half. The “$3” syntax in the rule indicates that the index of
the third item in the rule (clsSplitVowel) is what should be used to select
from clsSplitVowelLeft.

The glyph definitions show examples of using the Unicode mappings, glyph
IDs, and Postscript names.

 9

GDL example: stacking diacritics
 Rule
 clsTakesUpperDiac
 clsUpperDiac {attach.to = @1;
 attach.at = Ub; attach.with = Ud }}
 / _ ^ _;

 Classes
 clsTakesUpperDiac = (clsBase, clsUpperDiac);
 clsUpperDiac = (gAcute, gGrave, gCirum, ...);
 clsBase = (gA, gB, gC, ...);

 Glyphs
 gA = glyphid(..) {Ub = point(bb.width/2, bb.top)};
 gAcute = glyphid(...)
 { Ud = point(bb.width/2, bb.bottom - 50m);
 Ub = point(bb.width/2, bb.top) };
 etc.

The rule above handles attaching an upper diacritic to a base glyph or to another
diacritic. The statement attach.to = @1 says to attach the diacritic to the first
item in the rule (clsTakesUpperDiac), and attach.at = Ub says to attach it to
the point named “Ub” on that first item. The statement attach.with = Ud says to
use the point named “Ud” on the diacritic. The two glyphs are positioned so that the
attachment points exactly coincide.

The class of glyphs that can take upper diacritics includes not only base glyphs
(clsBase) but also upper diacritics themselves (clsUpperDiac). This allows the
diacritics to stack.

Another key aspect of allowing stacking can be seen in the context of the rule,
“/ _ ^ _”. This code indicates that after running the rule, the processing position
must be backed up so that the second item, the diacritic becomes the place from
where the next rule is run. This allows the rule to be fired again with the diacritic
serving as the base (clsTakesUpperDiac).

Every glyph in clsTakesUpperDiac must define the Ub attachment point. In
this example the point is defined in terms of the glyph's bounding box (bb), but they
can also use the advance width, font ascent or descent, numerical values, or points
on the glyph curve. Because diacritics are part of both clsTakesUpper-
Diacritic and clsUpperDiac, they must define both the Ub and the Ud
attachment points.

 10

Graphite engine API

 Font
 Provides access to tables, metrics, etc. for Graphite

engine
 Platform-specific subclasses: FileFont, WinFont,

FreeTypeFont, PangoGrFont, etc.
 TextSource

 Wraps text to be rendered
 Provides access to character properties
 Application-specific implementation

The Graphite API consists of four main classes. The Font class provides
access to the font tables and glyph metrics. Font is an abstract class; a number
of subclasses exist corresponding to various platforms and programming
environments.

TextSource is a wrapper for the text to be rendered. Its interface allows
Graphite to query for the characters to render, character properties, etc.
Generally each application will implement its own version of TextSource,
depending on the complexity of its text model. A simple version is available as
part of the open-source code.

 11

Graphite engine API

 Segment
 Laid-out glyphs, with metrics and properties
 Mappings from characters to glyphs and vice versa

 SegmentPainter
 Paint
 Cursor tracking; insertion points and range highlights
 Platform- and/or application-specific

 Optional; some apps do their own painting and editing

The Segment object represents a sequence of glyphs laid out on a single
line and ready to be drawn. It also records mappings from characters to glyphs
and vice versa. A Segment can be queried for these mappings as well as glyph
metrics and properties.

If multiple fonts and/or styles are used on a single line, the line will require
multiple Segments. A segment corresponds to what other systems often call an
“item.”

A SegmentPainter is an object that is capable of painting a segment on an
output device and handling editing operations. The SegmentPainter can draw
an insertion bar (or split bars) at a given character location, or highlight a
range of text. It can return the location of the highlight for the benefit of
scrolling routines. It can convert a mouse click location to a charater index,
which may involve distinguishing areas of ligatures that correspond to distinct
characters.

A SegmentPainter works in conjunction with a Font, and so there are
platform- or environment-specific subclasses. An application may also override
part or all of the standard functionality of SegmentPainter. Or it may
implement editing support directly (via queries directly to the Segment)
without using a SegmentPainter at all.

 12

Graphite engine API

 Justifier
 Call-back object to allow application to implement its

own justification algorithm
 Default implementation provided

An additional class (less important than the others) is Justifier, which
allows the application to implement its own justification algorithm. A stock
implementation of Justifier exists that is quite adequate for most applications.

 13

Graphite engine API

The above chart shows the process of rendering with Graphite. The
application creates a Font and TextSource and sends them to the Graphite
engine. The engine may possibly interact with the Justifier to lay out justified
text. The output from the engine is a Segment. To support editing behaviors,
the application can either interact with the Segment directly or create a
SegmentPainter that wraps the Segment.

 14

Layout process: two approaches

 Line-by-line
 Fit as much as possible on a line; go on to the next
 Problem: doesn't fit many applications' model

 Paragraph
 Layout entire paragraph in one segment
 Choose line breaks
 Layout single-line segments
 Disadvantage: you may have to do layout twice

The Graphite API supports two models of paragraph-level layout. The first
is to render a line at a time, asking Graphite to lay out as much as will fit and
and return both the laid-out text and the line-break index. The next line will
start at that point.

This was the approach assumed by version 1 of the Graphite API. The
disadvantage we discovered is that this does not fit the model of many
applications (OpenOffice in particular) that perform line-breaking as a very
separate operation from layout.

So version 2 of the Graphite API also supports a different approach. This is
to lay out an entire paragraph as one segment, which will provide all the
information needed to make decisions about line-breaks—breakweights,
metrics, etc. One these decisions have been made, each line is laid out as a
separate segment. Of course, a disadvantage of this approach is that all text
must be laid out twice.

 15

Graphite feature set

 Contextual glyph selection
 Reordering
 Splitting
 Complex positioning
 Attachment points
 Ligatures
 Justification
 Bidirectionality

 Line-breaking and
hyphenation (rule-based)

 Cross-line-boundary
contextualization

 PUA
 User-level features
 Split cursor support
 Insertion/selection within

clusters

Above are listed the various complex behaviors supported by Graphite.
These provide adequate support for all known modern writing systems.

One feature that we feel has been quite costly and not particularly useful
has been cross-line-boundary contextualization. This would allow, for instance,
reordering across a line-break, permitting a hyphenation-break in the middle
of a word that involves reordering. We are currently considering whether to it
might be as well to remove this capability from future versions. At the very
least, it is probably not necessary for a unified approach to support this
behavior.

 16

User-level features
 Glyph alternates

 Roman: uppercase Eng; literacy a and g; hooks, strokes, tails; etc.
 Cyrillic: E, shha, breve
 Arabic: meem, heh, sukun, Eastern digits, etc.
 Archaic forms (Tamil ai)

 Diacritic placement: Vietnamese stacking, Arabic
shadda+kasra

 Diacritic/cluster selection
 Showing invisible characters
 Typographic options: ligatures, swashes, etc.

An important capacity in Graphite is the ability provide user-level features.
These allow the user to specify variations in the way many characters are
displayed or behave. Features may involve selecting alternate glyphs, adjusting
the positioning of diacritics, or changing the way editing mechanisms behave.

SIL's Roman/Cyrillic and Arabic fonts include quite a number of user-level
features. Some of these are need for special purposes such as literacy materials,
others are language-related or regional preferences, and others represent
archaic forms.

 17

Graphite Demo

The demo will show examples of user-level features and some of the
advanced editing capabilities.

 18

Graphite non-features
 Inter-script or inter-font issues

 Client responsible for determining font-based “items”
 No “smart” mixing of styles (bold/italic, etc.)

 Paragraph-level layout
 Line or partial line layout only

 Glyph shape manipulation (rotation, resizing,
stretching, etc.)

 Dictionary-based hyphenation or line-breaking
 Rule-based only

Above are listed some of the limitations of Graphite support. Graphite is
only intended to provide single line layout; it is the responsibility of the
application to do paragraph-level layout. A segment includes text involving
only one font and style (bold/italic); the application is responsible to create
and lay out multiple segments on a line where needed, and there is no “smart”
contextual behavior between segments.

Graphite does not perform any glyph manipulation such as stretching or
rotating.

Graphite provides support for hyphenation and line-breaking that can be
described by transformation rules. More complex needs such as dictionary-
based line-breaking is not supported.

 19

Status

 Implemented in Windows, ported to Linux and Mac
(but not Aqua)

 Part of Ubuntu distribution

 Application/toolkit integration
 Pango: Firefox, Thunderbird, AbiWord
 OpenOffice
 XeTeX
 InDesign plug-in (Windows, LTR)
 Some work on Java

 Needs optimization

Graphite was originally implemented on Windows, and has been ported to
Linux. It also runs on Mac X11, but not under the native Aqua graphics
environment.

Graphite support has been added to Pango, OpenOffice, and XeTeX
(Unicode-based implementation of TeX by SIL's Jonathan Kew).

An alpha version of a plug-in for InDesign exists on Windows; it does not
handle right-to-left layout.

Some initial work has been done to create a Java-based wrapper.

No serious attempt has yet been made to optimize the Graphite engine.
Currently the performance seems usable but a little sluggish, depending on the
application's approach to layout.

 20

Status

 Graphite-enabled fonts
 Roman/Cyrillic/IPA: Doulos, Charis
 Burmese: Padauk
 Ethiopic: Abyssinica (linguistic features)
 Khmer: Mondulkiri – beta
 Arabic: Scheherazade – alpha
 N'ko – several under development
 Mongolian – under development
 Devanagari – planned
 Greek: Gentium – planned

The above list shows the Graphite fonts that have been developed or are
expected to be available in the near future.

 21

Technology comparison

 Philosophy
 Graphite: all knowledge integrated into the font tables
 OT-based: script-general knowledge separated from

font-specific knowledge
 Architecture

 Graphite: general-purpose engine + font tables
 Harfbuzz: C/C++ modules (general and script-specfic) +

OT font tables

As previously discussed, there are two main philosophies that govern
complex-script systems: one that treats script- and font-related knowledge
separately and one that integrates them.

With regards to system architecture, Graphite consists of a single general-
purpose engine that reads and interprets font tables. OpenType-based
technologies include script-specific modules as well as general-purpose OT-
driver modules that make use of the OT-font tables.

 22

Technology comparison

 Script-support development process
 Graphite

 Create or extend a font
 Write or extend a GDL program; compile a new version of the

font
 Harfbuzz

 Create or extend a font
 Add or extend OpenType support in a font
 Add or extend a system (C/C++) module

 We think the Graphite approach supports
“tweakability”

In order to create support for a script or language-specific writing system
in Graphite, one creates a font or adds the appropriate glyphs to an existing
font, and then creates or extends the corresponding GDL program and invokes
the Graphite compiler. In contrast, script support in an OpenType-based
technology like Harfbuzz involves not only OT programming but programming
a script module in a standard language like C or C++. Because Graphite support
involves only one font technology and one special-purpose programming
language, we feel that it is a better approach to enable support for minority
languages, many of which require “tweaking” of an existing implementation.
For this reason, Graphite can be a signficant technology in helping bridge the
“Digital Divide.”

 23

Font development tools

 GDL and compiler
 Perl script to partially auto-generate GDL based on

font information
 Don't we wish!

 Visual editor for positioning attachment points
 Ways around it

 Export from VOLT
 Export from FontLab

The basic approach to developing a Graphite font is to write a GDL program
and compile it into font. There is a Perl module that can assist with much of the
tedium of setting up glyph classes and attachment (anchor) points by
extracting information from the font and related tools.

Unfortunately, there is no equivalent to VOLT for Graphite. In particular, a
tool to visually place attachment points (anchor points) would be extremely
useful. Currently there are two second-best approaches: create anchor points
in FontLab and export them to an XML file and from there to GDL, or create
anchor points using VOLT and extract them into GDL.

 24

Graphite behaviors not (yet) supported by
OT-based technologies

 Essential
 PUA support

 Very important
 User-level features: regional and language-specific

variations
 Nice to have

 Insertion/selection within attached and reordered
clusters

 Ligature-component manipulation
 Split cursors

Graphite includes some capabilities are currently not available in the
OpenType-based systems. The ability to define rendering behavior for PUA
characters is an essential aspect of SIL's strategy to handle nonstandardized
writing systems. This is difficult in systems where some aspects of the behavior
must be hard-coded into the engine.

The ability to define user-level features is quite important to handling the
wide variety of regional and language-related variations that we encounter.
(While there are ways to get around it, they are awkward and cumbersome at
best.)

Graphite includes smart character manipulation to a degree not allowed by
any other system. Ideally any unified text-rendering API would include hooks
to make these capacities available to the application for any underlying
technologies that support them.

 25

Benefits of Graphite

 Minority language support
 Graphite model supports script/font development by

non-system programmers
 GDL

 Can serve as a script-behavior specification
 Advanced editing features
 Power
 Unencumbered

We believe that Graphite's pure smart font approach provides a good model
for complex script support in many situations where Linux system developers
are not likely to be involved.

The GDL programming language provides a way to specify rendering
behavior that is both powerful and natural enough to serve as documentation
for the script. This can in turn facilitate implementation using other
technologies.

Graphite's advanced editing features, while not essential, can be very useful
in writing systems that make extensive use of diacritics, reordering, and
ligation. User-level features or application options could be used to make some
of these behaviors optional.

Graphite is the most powerful smart-font system in existence. Experience
has shown us that many features that take weeks or months to implement in
OpenType can be accomplished in a straightforward way using Graphite.

While OpenType is widely used and available, commercial stakes in the
technology can be of concern to the open-source community. Graphite, on the
other hand, is completely open-source and unencumbered, and SIL is
committed that it remain so.

 26

Challenges in integrating Graphite into
a Harfbuzz-oriented model

 Harfbuzz requests information about legal
insertion points (“char stops”) early in the process

 Legal insertion points can be affected by which glyph is
used to render, attachments (positioning), etc.
Calculating it early in the process requires duplication
of logic.

 Changes would require rebuilding of Graphite fonts.

At this point, the main difficulty we envision in integrating
Graphite into the current Harfbuzz-oriented model lies in the fact
that Harfbuzz requires information about legal insertion indices
(“character stops”) at an earlier stage in the process than it is
available from Graphite. Graphite uses the approach it does in order
to allow editing behavior, including insertion indices, to be based on
the selection of glyphs or their positions. For instance, if you choose
to represent tone using diacritics, you might not want to allow
insertion between the base character and the tone marker, but if
you use superscript numbers (possibly due to a user-level feature), it
makes perfect sense to allow insertion before the tone.

Graphite's model could possibly be changed, but it would require
some duplication of logic on the part of the GDL programmer (e.g.,
testing for a feature both at the point of calculating the insertion
points as well as during glyph selection; or knowing about diacritic
attachment early in the process). Also this change would require
reprogramming and rebuilding all of the existing Graphite fonts in
order for them to work correctly within the Harfbuzz model.

 27

API needs for Graphite support

 User-level features
 Query font for supported features, values, UI labels

 Smart cursor/ligature support
 Convert point to character
 Retrieve insertion bar position, ideally two

 Ideally: handle cursor “leaning”
 Retrieve range highlights (discontiguous)
 OR provide access to char/glyph mappings, glyph

metrics, and ligature components and let the app
calculate them itself

In order to provide support for Graphite's most useful features, a general
text-layout API would need to include methods to query a font with regard to
user-level features and defined settings. This includes not only numerical IDs
but also strings that can be used to populate a UI mechanism, such as a feature
menu.

Less essential but still very useful would be methods to provide support for
advanced editing behaviors. This would involve either a way to make use of the
Graphite SegmentPainter class, or a way for the application to implement the
equivalent of SegmentPainter. The former would include methods to allow the
text-layout engine to convert a point (mouse click) into a character position, to
draw highlights, and to return highlight locations for the purposes of scrolling.

Alternately, the application could implement the equivalent of
SegmentPainter directly. This would mean making available the glyph-to-
character mappings, glyph positions and metrics, so that the application can
perform hit testing and draw highlights. Full support would also include
information about ligature component mappings and metrics—rectangular
glyph areas that correspond to distinct underlying characters.

Currently Graphite's API includes the concept of insertion bar “leaning”,
which in particular affects the behavior of split cursors. Ideally, a general API
would also support this concept.

 28

Questions?

 Contact information:
 Email: sharon_correll@sil.org
 Graphite web site: graphite.sil.org
 NRSI web site: scripts.sil.org

